MiR-15a decreases bovine mammary epithelial cell viability and lactation and regulates growth hormone receptor expression.
نویسندگان
چکیده
MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate the expression of target genes at the post-transcriptional level by transcript degradation or translational inhibition. The role of bta-miR-15a in bovine mammary gland hasn’t been reported. Using miRNAs prediction software, GHR gene was predicted to be a potential target of bta-miR-15a. In this study, bovine mammary epithelial cell line was used as an in vitro cell model to address the function of bta-miR-15a on bovine mammary epithelial cells. The expression changes of bta-miR-15a and Ghr after bta-miR-15a transfection were detected by qRT-PCR; the expression of GHR protein and casein was detected by western blotting. To determine whether bta-miR-15a can affect cell viability, cells were examined using an electronic Coulter counter (CASY-TT). In conclusion, bta-miR-15a inhibited the expression of casein of bovine mammary epithelial cells, and cell number and viability were reduced by bta-miR-15a expression. Bta-miR-15a inhibited the viability of mammary epithelial cells as well as the expression of GHR mRNA and protein level, therefore suggesting that bta-miR-15a may play an important role in mammary gland physiology.
منابع مشابه
miR-30e-5p and miR-15a Synergistically Regulate Fatty Acid Metabolism in Goat Mammary Epithelial Cells via LRP6 and YAP1
MicroRNA (miRNA) regulates the expression of genes and influences a series of biological processes, including fatty acid metabolism. We screened the expression of miRNA in goat mammary glands during peak-lactation and non-lactating ("dry") periods, and performed an in vitro study with goat mammary epithelial cells (GMEC) prior to sequencing analysis. Results illustrated that miR-30e-5p and miR-...
متن کاملMiR-139 suppresses β-casein synthesis and proliferation in bovine mammary epithelial cells by targeting the GHR and IGF1R signaling pathways
BACKGROUND MicroRNAs have important roles in many biological processes. However, the role of miR-139 in healthy mammary gland remains unclear. The objective of this study was to investigate the effects of miR-139 on lactation in dairy cows. RESULTS Here, we found that miR-139 was down-regulated in mid-lactation dairy cow mammary tissues compared with mid-pregnancy tissues. Then, we prioritize...
متن کاملRegulation of gene expression in the bovine mammary gland by ovarian steroids.
It is well established that estrogen is required for mammary epithelial cell proliferation and ductal development in the growing animal, and that lobuloalveolar development during gestation is dependent on progesterone. The effects of these steroid hormones on gene expression in the mammary gland are mediated primarily by their respective nuclear hormone receptors, which function as hormone-bou...
متن کاملComparative Expression Profiling of Lactogenic Hormone Receptor and It’s Signaling Molecules of Bovine Mammary Glands during lactation
Milk synthesis is known to be modulated by peptide hormones such as prolactin (PRL), growth hormone (GH), and insulin-like growth factor I (IGF-I). Previous studies suggested that PRL and IGF-I acted directly on mammary epithelial cells and were involved in lactation. Meanwhile, GH is thought to be indirectly involved in lactation by stimulating the secretion of IGF-I. It is controversial as gr...
متن کاملMiR-486 Regulates Lactation and Targets the PTEN Gene in Cow Mammary Glands
Mammary gland development is controlled by several genes. Although miRNAs have been implicated in mammary gland function, the mechanism by which miR-486 regulates mammary gland development and lactation remains unclear. We investigated miR-486 expression in cow mammary gland using qRT-PCR and ISH and show that miR-486 expression was higher during the high-quality lactation period. We found that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 17 10 شماره
صفحات -
تاریخ انتشار 2012